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I 
Stnnniary 

Given that a distribution function is a member of a subclass 

of absolutely continuous measures, we consider the problem of non- 

parametric estimation, with the method of maximum likelihood, of the 

underlying density function of a given sample of independent identically 

distributed randan variables. Sufficient conditions on the space of 

probability densities and its topology are given for the consistency of 

such an estimate. 



1. A Topology of Pointwise Convergence. Let our random variables take 

values in some 0-finite measure space (fl ,3,^). Hereafter we refer to 

the Radon-Nikodym derivative of a measure with respect to p, as its 

density. By a probability measure (denoted F, G, H with or without 

subscripts) we mean a nonnegative Borel measure on (ft,3)     with F(n) < 1. 

(Note that F(fl)  may be < 1.)  We shall consider a subclass 6 of 

densities (denoted f, g, h, f = dF/dy-,  etc.) of absolutely continuous 

probability measures, and give £ a topology of pointwise convergence. 

Specifically, given an element  fe6, we assume there exists a fixed set 

Bf e3>, called the exceptional set of f, such that iJ.(Bf) = 0 and a net 

{f , a cAj in 6 converges to f whenever 
a 

and 

Lim B- = U  n B- c B 
a a  aeA ß>a  ß 

Lim f (x) = f (x) all x not in B^.. 
a a 1 

It is shown that the collection of all pairs  (£7,f), where 

&=  {f } is a net converging to f, both f and f  elements of fi, 

satisfy the conditions for a convergence class (c.f. Section 4).  Hence 

there is a unique topology on & such that we have precisely the convergence 

indicated.  (The collection of pairs  (£f,f)  will define a closure operator, 

which in turn defines a topology.) 

To exemplify the idea of exceptional sets, we mention briefly an 

application.  Let  (fi,3>,v0  be the right half line  CO,*"), the Borel field, 

and Lebesgue measure.  Let 6 be the class of densities which are non- 

increasing on 0, with total mass one.  Then any element of 8 has at most 

countably many discontinuities. Given an element fe^, let the exceptional 

set of f be the collection of its discontinuities. Then our topology on 

6 is precisely the same as  the topology of convergence at points of 

continuity. 



2.  Nonparametric Maximum Likelihood Estimation. We shall be concerned 

with estimating by the method of maximum likelihood the underlying 

probability density f given a sample x  of size n of Independent 

identically distributed random variables with observations x1 ,x ,...,x 
1 '2' 

and given that  f is a member of some class 6, 

That is, given a sample x , we define the "likelihood" functional 

L on C: 

n 
L(g,x ) =  S log g(x.), 

n    1=1 

and for a fixed sample x , we define our "maximum likelihood estimate" 

of the density of x  to be a point (if one exists) of 6 which 

maximizes L(•,x ). 

It is our intent to show that with certain restrictions on the class 

of distributions and its topology the maximum likelihood estimate is 

consistent, that is, as our sample size gets large, the estimate of the 

density almost surely converges to the true density. 

Often our estimate f  will not be a proper member of 6-, but instead 

the density f  will be a limit of measures in 6  Thus we are led to 
J       n 

consider a compactification £    of 6. 

We assume the elements of X are densities of probability measures, 

and corresponding to every element in X there is an exceptional set of 

V. measure zero such that f  converges to f if and only if f (x) 

converges to f(x) for all x not in the exceptional set and 

lätLPt   *" Bf * 
n 



Since the correspondence between measures and densities is not one 

to one, we  find It convenient to work in quotient spaces    C/R, ^/ft, where 

ß    is the  equivalence relation 

fRg    in case    f(x)  = g(x) 

except on a set of ji measure zero.  (c.f. Section 5.) 

The added complexity of considering the quotient space with the 

quotient topology is bothersome h   unavoidable. If ^ and £ are such 

that (as is the case in the classic; .. k-dimensional cases)  f, g in ^ 

and  f R g if and only if  f = g, then the quotient spaces 6/R and 

■C/R are precisely the same as ß and £., 

Classically the method of maximum likelihood has been restricted to 

families of distribution functions having some k dimensional parauneter- 

ization. The distributions are then given the metric topology induced by 

the usual metric on the parameter space and the estimates are shown to be 

consistent subject to certain regularity conditions. 

Consistency, however, is essentially a topological property, and it 

is unduly restrictive to establish it only on the basis of a parameter- 

ization. 

The problem of estimating a measure instead of its density is in 

many ways more appealing.  However, with the method of maximum likelihood 

it is the density which is important in picking an estimate. The trans- 

formation between X/R and the corresponding class of probability measures 



is, of course, one to one, but the corresponding estimate of the measure 

will in general be consistent if and only if the transformation from 

densities to measures is continuous. That is, our corresponding estimate 

of the measure will be consistent when we give the measures a topology 

which is contained in the topology induced by the transformation from 

elements of -C/R to the corresponding measures.  It is interesting to 

note (c.f. Section 6) that in many cases the topology induced on the corre- 

sponding measures is precisely the topology of convergence in distribution. 

For instance, this is the case if we take 6 to be the class of all uni- 

modal densities uniformly bounded by M, (c.f. Section 3) or if we take £ 

to be the class of densities with increasing hazard rates, (c.f, [4].) 

Note that in the classical cases of k dimensional parameterization 

there is a continuous one to one transformation from the parameter space 

to the densities (with our topology) and similarly to the class of measures 

with the topology of convergence in distribution.  Since Euclidean k-space 

has the property of invariance of domain it follows that these transforma- 

tions are bicontinuous, and hence the transformation from densities to 

measures is continuous.  Moreover, it is clear that the classical classes 

of densities are locally compact and locally separable, since they are • 

homeomorphic to a subspace of k-space. 

Following A. Wald (c.f. C5]) , we intend to give a proof of consistency 

assuming that we have a locally separable, locally compact quotient space 

£/R of probability densities, which together with a suitable compactifi- 

cation  J/ß satisfies Conditions 1-5.  By locally separable, we mean 



the neighborhood system at a point has a countable base. 

Section 6 is a topological discussion which is intended to make these 

hypotheses more amenable. 

Condition 1. 8/R with the above mentioned topology of pointwise 

convergence, is a locally separable, locally compact Hausdorff space. 

We assume that there exists some Hausdorff compactification <C of 

6 such that i/R and 2/R satisfy the following conditions. 

The following is of paramount importance to the method of maximum 

likelihood and is known to ba true under a wide range of conditions.  Let 

P be the projection of X into X/R.  (c.f. Theorem 6.1, pages 5, 6, Ik  of C3].) 

Condition 2. If P g e X/R , p f e C/R , are distinct elements of -C/R, 

then 

and 

eF log g(x) < eF log f(x) 

< 6F log f(x) < + 

(Here £  denotes integration over 0    with respect to F.) 
j? 

For a subset B of X/R let 

s(x,B) = sup f(x). 
PfeB 

Condition 3. If P g e X/R, P f e C/R are distinct points of -C/R, then 

for sufficiently small neighborhoods B of Pg, the function 

log s(.,B) 



is measurable and bounded above by some function which is integrable 

with respect to F. 

Lemma 1. Let l^ J be a decreasing sequence of neighborhoods of 

Pg in X/R such that nil = {P g}, 

Then 

Linr E log s(x,U ) = E log g(x)  for any F in 6. 
n    £ n    x 

Proof.  In view of Condition 2 we have only to show that 

(1.1)      Limn s(x,Un) = g(x)  a.s. F; 

for the asserted result then follows from the fact that s(x,U )  is ' n 

decreasing and the bounded convergence theorem. To show (1.1) we begin 

by using Condition 1 and throwing out a set  B of p, measure zero (and 

hence of F measure 0) so that on ß ~ B, g  converging to g implies 

g (x)  converges to g(x.).  Now, for fixed x not in B and any € we 

can pick g  in U  so that s(x,U ) - g (x) < e.  It follows that 
n     n ' n    n . 

Lim s(x,U ) - g (x) = Lim s(x,U ) - g(x) < e, for any e, thus 

s(x,U ) I  g(x), as was to be shown. 

Given a sample x. ,...,x  of independent random variables with 

density f, let  f  be a point in £    which maximizes the likelihood 

functional L(•,x ).  We say that the sequence of estimates  {f 3  is 

consistent in case P f  converges to P f in the topology of -E/R with 

F probability one.  Note that this is in general stronger than saying 

that  f (x)  converges almost surely to  f(x)  except on a set of y. 

measure 0. 

I 



It is not obvious that the event {P f  converges to P f in the 

topology of X/ft] is always measurable. It is our in-^nt to show that 

the complement of this event is a subset of a measurable set of F 

measure zero, and hence measurable. Similarly, in the sequel, measur- 

ability is implicit in the statements that events have F measure one. 

The essence of the fact that maximum likelihood estimates are con- 

sistent is contained in the following theorem. 

Theorem 1.  Let P g in -C/ft and P f in 6/ß be two distinct 

elements of. X/R and let X. ,X_...  be a sample with density function f. 

Then for sufficiently small neighborhoods U of Pg: 

Lim supn[suppheUL(h,Xn) - L(f-,Xn)3 < 0 

with F probability 1. 

Proof.  Given Pg not equal to P f there exists (by Condition 2 and 

Lemma 1) a small neighborhood  U of P g such that 

(1.2) 

Now 

EF log s(X,U) < EF log f(X) . 

supheU n S los h(Xi) - n S los s(Xi'l7>' 

Taking limits we see by the strong law of large numbers that with F 

probability one 

i E log s(x.,0) - Ev log s(X,ü) 

and 

i S log f(X, ) - E^ log f(X) 
n 2. £ 

and the result follows by (1.2). 



■ 

Corollary to Theorem 1. Let X^X-,..., and Pf be as in Theorem 1. 

Let D be any closed set not containing P f. Then 

Lim supnCsuppheDL(h,Xn) - Uf,\)l < 0 

with F probability 1. 

Proof.  By Theorem 1, any Pg in D can be covered by an open neighbor- 

hood  U  with the property that 
g 

. Lira supnCsupheU L(h,Xn) - L(f,X )] < 0. 
g 

From the open cover  {u ,ge D}  of D, let  Ü-,...,D  be a finite sub- 
g -L rn 

cover.     Then with    F    probability 1, 

Lira Supn[supphcDL(h,Xn)   - L(f,Xn)] < 

Lim sup   {  max  [sup L(h ,X ) - L( f ,X  )] ] =   max Lim sup  [sup L(h,X ) -L(.f,X )]<0 
n l<i<m Ph€D n n l<i<m n Pheüi n n 

■w ~ — — 

as was to be shown. 

Theorem 2.  (Consistency of Maximum Likelihood Estimate)  Let  f(';X ) 

be a point of £  depending on the random variable X.,.,.,X = X  such that 

7t f(X. ;X ) 
,    i' n 

n 
n f(X.) 

> c    where c > 0. 

Then P f (• ,X ) converges to P f in the topology of £/R with F probability 

one. 

Proof.  For notational simplicity, write f (•) = f(»;X )  then if   ^    • •        n        ' n    . 
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it  f  (x.) 
1    n    i 

7i  f(x ) 
1 

> c > 0, 

then 

(2.1) Lim sup 

l/n 

> 1. 

and therefore 

Lim sup CL(f ,x ) - L(f,x )] > 0. •^n   n' n      ' n  — 

Let  U be any open neighborhood of P f. If P f  is outside of U 

infinitely often, then 

Lim supn[suppheJ,_uL(h,xn) - L(f ,xn)] > 0 .      * 

By the corollary to Theorem 1, this can occur only on a set of measure 

zero.  Now, let  tU.} be a decreasing sequence of neighborhoods of Pf 

whose intersection is P f. Corresponding to each U.  there is an event 

S.  of F    measure zero such that on the complement of S., Pf  is 
CO 

eventually in U.,  It follows that on the complement of  TJ S., P f  is 
i=l 

eventually in every neighborhood of P f, Thus Pf  converges to P f in 

the topology of X/R with F probability 1, as was to be shown. 

3.  Application to Estimation of a Unimodal Density.  Let our sample 

space be the real line with the usual Borel field and Lebesgue measure. 

Take ß to be the class of unimodal densities uniformly bounded by some 

constant M and such that 

J f(x)dx = 1. 
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That is, the class of densities for which there exists some x 

such that  f(x) < M, f is nondecreasing on (—»»x], and nonincreasing 

on [x,+o°).  Any such x is called a mode of  f. Note that if x and 

y are modes of f, then f(x) = f(y).  If x  is a mode of f, we define 

the height of f to be the value f(x). 

Any element of £ has at most countably many points of discontinuity. 

Give £ the topology of pointwise convergence on points of continuity. 

That is, given an element  f in £, we take the exceptional set B„ to 

be the points of discontinuity of f. 

Add to 6 all densities of the form p f, 0 < p < 1, and f in £■, 

and give X the topology of convergence on points of continuity.  Again 

in this case the exceptional set of p f will consist of the points of 

discontinuity of f. 

Note that the class of unimodal densities which are finite linear 

combinations of characteristic functions is dense in •£ .  Moreover,-the 

characteristic functions may be taken to be 1  on intervals with rational 

end points, and the multiplicative coefficients may be taken to be rational. 

Thus unimodal densities of this type form a countable dense subset of -C. 

Let C denote this countable dense subset of -E, 

We will now construct a base for the neighborhood system at a point 

f of •£.  Let D be a countable dense subset of the points of continuity 

of f.  For every positive integer n and every finite subset d,,...,d 

of D, we construct a neighborhood U of f as follows. 

U = {g : i)  |g(di) - fCd^l < 1/n for i = 1, . .. ,m 

ii)  there is a mode m  of g and a mode m  of  f such that 

'ml " m2' < 1/'n 
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iii)  If f has a mode which, is a point of continuity, then 

[height of g - height of f| < l/n, otherwise there is 

no restraint on the height of g.} 

It follows that X has a countable dense subset and is locally 

separable, thus there exists countable base for the topology of X. 

Hence, it suffices to verify that -C is sequentially compact. 

Suppose  {f ]  is a sequence in £.     Let m  be a mode of f . rr n n n 

Then, if iim sup m = +<», there is a subsequence of {f } which 
' n n    ■ 

converges to the density z(')  which is identically zero.  Similarly 

if lim inf m =•-<», there is a subsequence of If }  convering to z. 

If, on the other hand, -» < a < m < b < +» for-all large n, then 

pick a subsequence such that m  converges to some finite value m.  Now, 

we have a sequence of uniformly bounded functions which are nondecreasing 

on C-«0 m ]. and m  converges to m.  Hence by considerations similar 
'  n '      n 

to the Helly Weak Compactness theorem we may pick a subsequence which is 

convergent on (-00, m].  Similarly, from this we may pick a subsequence 

which is convergent on  [m, +00), and this sequence is convergent in i, 

as was to be shown. 

It can be seen that s(x,U)  is in fact equal to the supremum of 

g(x)  where g is in the intersection of U and the countable dense 

set C. Thus s(x,U)  is the supremum of countably manyomeasurable functions 

and as such is measurable.  The function  log s(x,ü)   is F integrable 

since it is bounded by log M. 
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For Condition 2, recall that f € 6 implies that 

oo 

.f f(x)dx = 1, 
—00 

and note Theorem 6.1. 

Thus the class of bounded unimodal densities satisfies all the 

regularity conditions, and it follows that the maximum likelihood estimate 

of the density, given a sample of observations, is consistent. 

R. Pyke (in a private conversation) has suggested an algorithm for 

computing this estimate.  This and other applications are to appear in 

a forthcoming paper. 

In another paper [4] to appear, A. W. Marshall and Frank Proschan 

consider the maximum likelihood estimate of a distribution with monotone 

hazard rate.  If we take 0 to be the half line  [0,+<»), these distribu- 

tions satisfy our requirements for consistency of the estimate.  However, 

they consider 0 to be the whole real line and give a direct method of 

proving consistency.  An easy algorithm is given for computing this 

estimate. 

4.  Appendix, Convergence Classes.  Let 3E be a space of densities of 

probability measures on (0,3,p,), and assume that with each  f e X  we 

associate a set  EL e 3 of ii measure zero. Then form the class G    of 

pairs  (^,f), where f e I  and ^'= [f ,aeA]  is a net in I such that 

f (x)  converges to f(x)  for all x not in B . and Lim B„ c: B„. Then, 
a 1      a II 

a 
in the notation of Kelley, [2], we have: 



1^ 

Theorem 4.1 C is a convergence class. 

Proof First note that if f = f for all aeA, then f , a€A 
  a 'a 

converges Q   to f. 

Second, if f  converges G    to    f, then off B„ every subset of 

f (x)  converges to f(x)  and hence every subset of {f , aeA}  converges 
a <x 

to f. 

Third, if f  does not converge ß to f, then there is some point 

x not in  _ such that  f (x)  does not converge to  f(x).  Hence, there 
f a 

is a subnet  {f (x) , aec}, no subnet of which converges to f(x). Thus 

no subnet of  {f , aec}  converges to f. 

Finally, we must show that 6    satisfies the theorem on iterated 

limits.  We can do no better here than to remind the reader of our defini- 

tion of convergence and refer him to Kelley [2], pages 6^,  73,  and 74. 

This completes the proof of Theorem 4,1, and hence having determined 

the-exceptional sets, there is precisely one topology on £ and one 

extension to £ which gives us the convergence asserted, 

5,  Appendix, Quotient Spaces and Projections,  Let R be the equivalence 

relation on X; 

fRg   whenever f(x) = g(x) 

except on a set of p. measure zero. 

That is, two densities are ß-equivalent when they are equivalent forms 

of the Radon-Nikodym derivative of the same probability measure. 
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Let P be the projection of £    onto X/R. Then, with the quotient 

topology P is continuous and hence we have 

Lemma 5.1 The space >E/R is compact when £    is. 

Corollary 5.2 If ■£ is a compactification of &    whose elements are 

densities of probability measures, then X/R is a compactification of 

e/R. 

Appendix 6.  On the Conditions 1-3. The following theorem concerning 

Condition 2 is well known. 

Theorem 6.1 Let  f be a probability density such that 

f f(x)vi.(dx) =1,  and ^ log f(x) < + ». 

Let g be any probability density which is not R-equivalent to  f, 

then 

(i)  eF log g(x) < eF log f(x) 

Proof Let  f have support S, then 

(ii) eFl0sf^iloeeFfrfr =loeIffi}f(xMdx) =0- 
Moreover 

(lli) eF us |g < iog er |g 

unless the real valued random variable g(x)/f(x)  is almost surely equal 

to some constant c.  But,  c < 1 since  | f(x)p.(dx) = 1 and J g(x)v-(dx) < 1. 

Now, if c were equal to 1, then g is equal to f almost everywhere on 

the support of f, and therefore g must be R-equivalent to  f, which is a 



16 

contradiction.  Hence c < 1, and 

6 log c < 0 

as was to be shown. 

Some remarks on Condition 1 may be helpful, 

In the sequel, let (,Q,3,v.)     be the real line, Borel field, and 

Lebesque measure.  If £7 is a class of absolutely continuous distribution 

functions, then given F in ?, there exists a set  B  of p. measure 

zero such that off B^, the formal derivative exists and is unique.  Thus, 

if £ is a class of formal derivatives of elements of £7 and the exceptional 

set of an element  f in £ is the forementioned set  B^ depending on 

the corresponding distribution function, we have a natural and pleasing 

topology on £,  It turns out (Theorem 6.6) that projection into the quotient 

space 6/R is aclosed map,- and the natural map from S/R into the topological 

space £7, (with the topology of convergence in distribution) is a homeo- 

morphism.  Thus consistency of the derivative (in our topology) is equivalent 

to the consistency of the corresponding estimate of the distribution function 

(with the topology of convergence in distribution). 

This leads us to the following definition:  A topological space I 

of densities is well defined in case 

(i)  The exceptional set of a density in 3£ depends only on the 

corresponding measure; that is, given a probability measure 

all versions of the Radon-Nikodym derivative which are in x 

have the same exceptional set, call it BF. 

(ii) Given a probability measure F all versions of the Radon Nikodym 

derivative of F which are in  3E are equal off the exceptional 

set  B„ 
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It should be pointed out that although the space £ may be well 

defined, it is not in general true that an otherwise suitable compaoti- 

fication X  of 6 will be well defined. 

For example, if ß is the class of unimodal derivatives of probability 

measures on C-00, +00)  with the topology of convergence at points of conti- 

nuity, then any suitable compactification of £ will contain densities 

which are not formal derivatives. 

On the other hand, if 6 is the class of all nonincreasing derivatives 

of probability measures on  [0, «>), then C is compact if we include 

measures with mass less than one.  Hence £  can be taken to be well defined, 

and £ and X have the topology of convergence at points of continuity. 

In the sequel, we assume that  ■£  is a compact well defined space of 

probability densities.  We let cp be the natural map of an element f of 
-X 

■C into F(x) = J  f(t)dt, and let 3    be the image under cp of -C, with 
.-00 

the topology of convergence in distribution.  Since the continuous image of a 

compact space is compact, and a subset of a compact space is compact if and 

only if it is closed, we have: 

Theorem 6.2 cp is a closed map. 

Now, an element of 3   is uniquely determined if we know its value on 

some fixed countable dense subset, in fact we have the well known 

Theorem 6.3 0  is homeomorphic to a subspace of the cube of dimension 

u) (the first infinite ordinal). 

Hence, &   is locally separable (in fact has a countable base), and 

we need consider only sequences. 

I 
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There is a natural one to one map (call it  h)  fro-n 3   to -C/R. 

We can give £/R a topology  (call it C ) such that  h is a homeo- 

morphism.  It follows that the map h(cp(")) is a closed continuous map 

from the topological space X to the space (X/'^,^h)» and therefore 

(C2j, page 95) C  is precisely the quotient topology on -C/R, Hence 

Theorem 6.^- The projection of X onto X/R is a closed map, and 

the natural map from -C/R to £7 is a homeomorphism. 

Going back to the original space £ we easily have 

Theorem 6.3  (Condition 1) 6/R is a locally separable,locally compact 

Hausdorff space, and is homeomorphic to cp(£). 

Condition 5 on the supremum function is not so easily analyzed.  In 

all of the cases that have come to our attention, the supremum may be taken 

over a countable class of measurable functions, and as such is measurable. 

The integrability of this function may be assured by assuming that the class 

of densities is uniformly bounded above by some constant.  If the resulting 

estimate does not depend on the constant, then we may conclude, by a limiting 

argument, that the estimate is consistent without the condition of boundedness. 
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